IBM entwickelt Computational Scaling-Lösung für die kommende Generation der…
IBM entwickelt Computational Scaling-Lösung für die kommende Generation der 22-Nanometer-Halbleiter
Wegbereiter für neue, künftige Server und Consumerelektronik der nächsten Generation
Stuttgart, 22. September 2008: Als Reaktion auf den Bedarf an immer kleineren, leistungsstärkeren und energieeffizienteren Elektronikgeräten hat IBM den ersten rechenbasierten Prozess für die Produktion der nächsten Generation von 22-Nanometer-Halbleitern vorgestellt. Bekannt als „Computational Scaling“ (CS), handelt es sich um einen Prozess, der die Produktion von komplexen, leistungsstarken und energieeffizienten 22-Nanometer-Halbleitern (und darüber hinaus) ermöglichen kann. Diese neue Initiative kann auch auf die Unterstützung verschiedener IBM Partner wie Mentor Graphics und Toppan Printing bauen.
Heute werden die meisten integrierten Schaltkreise mit 45-Nanometer-Technologie oder vorherigen Technologieprozessen hergestellt. Die Produktion von 22-Nanometer-Schaltkreisen ist besonders herausfordernd, da sich aktuell verwendete Lithographiemethoden, mit denen via Fotomasken Abbildungen von Leitungsmustern auf Siliziumscheiben in großen Mengen aufgebracht werden, aufgrund von physikalischen Beschränkungen sich nicht mehr in der 22-Nanometer-Dimension eignen. Computational Scaling kann diese Beschränkungen umgehen, indem es mathematische Techniken zur Modifizierung der Maskenform und der Eigenschaften der „Lichtquelle“ auf jeder Schichtenebene eines integrierten Schaltkreises nutzt.
Die IBM Computational-Scaling-Lösung repräsentiert ein Ökosystem, das mehrere Komponenten enthält: eine neue Auflösungsverbesserungstechnik (Resolution Enhancement Technique RET), die SMO (Source-Mask Optimization) nutzt; virtuelle Silizium-Verarbeitung mit TCAD; vorhersagende Prozessmodellierung; Design-Regel-Generierung und korrespondierende Design-Modelle, Design Tooling; Design Enablement; komplexe Belichtungsverfahren; Streuungskontrolle und Maskenfertigung gemeinsam mit wichtigen Industriepartnern.
Die individuellen Komponenten der IBM Computational-Scaling-Lösung umfassen:
Source-Masken-Optimierung: IBM hat gemeinsam mit Mentor Graphics eine neue verbesserte Auflösungstechnik entwickelt, die kosteneffektives Drucken von zweidimensionalen Mustern für die Generation der 22-Nanometer-Halbleiter-Technologie ermöglicht. Diese neue Technologie, die auch als Source Mask-Optimierung bekannt ist, kann Doppelmuster durch den Einsatz speziell zugeschnittener „Sources“ mit optimierten Maskenformen reduzieren.
Virtual Fabricator: IBM hat zusammen mit dem Rensselaer Polytechnic Institute und dem Staat New York bedeutende Investitionen im Bereich des High Performance Computings getätigt und engagiert sich mit der Einrichtung des Computational Center for Nanotechnology Innovations (CCNI) auch weiterhin an der Erforschung der Halbleitertechnologie. Das CCNI stellt enorme Rechenleistungen bereit, die genauere Vorhersagen für Hochtechnologie-Produktionsprozesse ermöglichen. Gemeinsam mit Prognosemodellen und TCAD kann diese neue Plattform Halbleiter-Herstellprozesse und wichtige Schaltkreis-Designelemente auf virtueller Basis optimieren helfen, um Lernzyklen bei der Entwicklung zu verkürzen und die Zeit bis zur Markteinführung von moderner Halbleitertechnologie („time to market“) zu reduzieren.
Designtechnologie-(Ko-)Optimierung: Bei der Halbleiterherstellung werden „Design-Regeln“ als abstrakte Darstellung der Information oder des Modells, das die zu entwickelnde Technologie beschreibt, erstellt. Meist können diese Regeln nur nach einem längeren Abstimmungsprozess zwischen den Technologie- und Designteams festgelegt werden. Um die Abstimmungszeit und die Sicherheit dieses Prozesses zu verbessern, unterstützt der IBM Design Technology Co-optimization (DTCO)-Prozess bei der Integration und Automatisierung dieser komplexen Prozedur, indem er die Zeit bis zur Erreichung eines klaren und stabilen Regelsets als Nutzungsgrundlage für die Schaltkreis-Design-Teams deutlich reduzieren kann.
Design Enablement-Tools: Durch den Einsatz von IBM DTCO verfügt der Halbleitermodellierungsprozess über eine neue Klasse an Design-Regeln, die nicht nur einfacher, sondern auch anschaulicher sind. IBM bietet gemeinsam mit EDA-Anbietern (Engineering Design Automation) neue Designlösungen für einen nahtlosen Übergang an.
Critical Dimension Variance Control: IBM ermöglicht in seiner Rolle eines Prozess-Integrators zusammen mit wichtigen Ausrüstungsanbietern ein anpassungsfähiges Steuerungsystem zur Minimierung von Größenvarianzen. Dadurch können Produktionsausstoß (Yield) und die Schaltkreis-Parameter zuverlässiger werden und die Produktionskosten möglicherweise sinken.
Fotomasken-Herstellung: Um die Lücke in der optischen Auflösung zu schließen, können verbesserte Auflösungstechniken wie SMO (Source Mask Optimization) die minimale Größengrenzen in der Auflösung von Details auf der Photomaske weiter verschieben helfen. IBM arbeitet gemeinsam mit Toppan an der rechtzeitigen Verfügbarkeit von Masken mit der erforderlichen Detailauflösung.
Weitere Informationen unter www.ibm.com/technology oder in der original Presseinformation anbei.
IBM Develops Computational Scaling Solution for Next Generation „22nm“ Semiconductors
Semiconductor Breakthrough to Benefit Cloud Computing; Paves Way for Next-Gen Servers and Consumer Electronics Devices
ARMONK, NY – In response to ever increasing demands for smaller, more powerful and energy-efficient devices for cloud computing and high-performance servers, IBM (NYSE: IBM) today announced the semiconductor industry’s first computationally based process for production of next generation 22nm semiconductors. Known as Computational Scaling (CS) — a process that enables the production of complex, powerful and energy-efficient semiconductors at 22nms and beyond — this new initiative will feature support from several of IBM’s key partners initially including Mentor Graphics and Toppan Printing.
Today, most integrated circuits are manufactured at 45nm or larger technology nodes. Producing circuits at 22nm is a challenging milestone since current lithography methods — the process of designing photomasks to image circuit patterns on silicon wafers in mass quantity — are not adequate for critical layers at 22nm due to fundamental physical limitations. Computational Scaling overcomes these limitations by using mathematical techniques to modify the shape of the masks and characteristics of the illuminating source at each layer of an integrated circuit.
This initiative directly links to IBM’s Cloud Computing strategy, which offers highly scalable, more energy efficient Web services. Through cloud computing, enterprises and individuals can access these services in a highly flexible and open environment. As demand for these services grows, more powerful and flexible servers based upon advanced technologies will be required.
„The traditional scaling approach is optical-resolution centric,“ said Gary Patton, vice president, IBM Semiconductor Research and Development Center. „IBM’s Computational Scaling approach is centered on advanced mathematical techniques encapsulated in software tools that use high performance computing systems. This technique also makes technology complexity transparent to the designer and maximizes flexibility through integrated flows and automation.“
IBM’s CS solution is an ecosystem that includes the following components: a new resolution enhancement technique (RET) that uses source-mask optimization (SMO); virtual silicon processing with TCAD; predictive process modeling; design-rule generation and corresponding models; design tooling; design enablement; complex illumination; variance control; and mask fabrication, along with necessary partnerships.
The strategy of combining the strengths of industry leading partners for CS will leverage IBM’s core strengths in successful management of innovative partnerships, semiconductor processing, high performance computing, IC design, design tooling and system integration.
The individual components of IBM’s CS solution include:
Source Mask Optimization
IBM has partnered with Mentor Graphics on a new resolution enhancement technique to enable cost-effective printing of two dimensional patterns for the 22nm semiconductor technology generation. This new technology, know as source mask optimization, will provide a means to minimize the use of double patterning by employing highly customized sources with optimized mask shapes.
„Our partnership with IBM will ensure production-ready technologies are in place when they are needed for the 22nm node,“ said Joseph Sawicki, vice president and general manager for the design-to-silicon division at Mentor Graphics. „Because this next generation solution will be built on the familiar Calibre platform, designers will see a smooth transition path to 22nm, and will also enjoy added benefits in managing turnaround time and the cost of computing.“
Virtual Fabricator
Together with Rensselaer Polytechnic Institute and the State of New York, IBM has made significant investments in the area of high performance computing and remains devoted to the advancement of semiconductor technology through the establishment of the Computational Center for Nanotechnology Innovations (CCNI). CCNI provides the unprecedented computational power to enable accurate predictions of advanced manufacturing processes. When combined with predictive models and TCAD, this platform will allow virtual co-optimization of semiconductor unit processes and critical circuit design elements to cut development learning cycles and improve time-to-market for advanced semiconductor technology.
Design Technology Co-Optimization
Within semiconductor fabrication, design ‚rules‘ are created as an abstract representation of the information or model that describes the technology being created. Often, these rules are only defined after an exhaustive negotiation process between the technology and design team. To improve the timeliness and certainty of this process, IBM’s Design Technology Co-optimization (DTCO) process helps integrate and automate this complex procedure, cutting the time it takes to reach a clear and stable set of rules for use by the circuit design teams.
Design Enablement Tools
As a result of using IBM’s DTCO, a semiconductor modeling process will have a new class of design rules that are simpler and more prescriptive (what to do vs. what not to do). Working with engineering design automation (EDA) suppliers, IBM will be providing new design enablement solutions for a seamless transition.
Critical Dimension Variance Control
Working with leading equipment suppliers, IBM will play the role of lead integrator of providing an adaptive control system to minimize critical dimension variance. As a result production yield and circuit parameters will be more stable reducing the cost of production.
Photomask Fabrication
To address the gap in raw optical resolution, aggressive resolution enhancement techniques such as SMO drive unprecedented minimum feature sizes on the photomask — the opaque plate with holes or transparencies that allow light to shine through in a defined guide for casting the circuit patterns. IBM has partnered with Toppan to ensure timely availability of masks with the required feature sizes.
„It has been more than three years since Toppan and IBM launched our joint development project for advanced photomask process,“ said Toshiro Masuda, managing director and head of Semiconductor Solutions Division of Toppan Printing. „We believe our ongoing engineering collaboration will significantly enhance the success of IBM’s computational scaling solution.“
About IBM
For more information about IBM’s semiconductor products and services, visit www.ibm.com/technology.
IBM Deutschland
Pascalstraße 100
70569 Stuttgart
Phone: +49-711-785-1627
Mobile: +49-160-96864835
E-Mail: kathrin.gisdon@de.ibm.com
339371